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ABSTRACT: Population-wide surveillance of COVID-19 re-
quires tests to be quick and accurate to minimize community
transmissions. The detection of breath volatile organic
compounds presents a promising option for COVID-19
surveillance but is currently limited by bulky instrumentation
and inflexible analysis protocol. Here, we design a hand-held
surface-enhanced Raman scattering-based breathalyzer to iden-
tify COVID-19 infected individuals in under 5 min, achieving
>95% sensitivity and specificity across 501 participants
regardless of their displayed symptoms. Our SERS-based
breathalyzer harnesses key variations in vibrational fingerprints
arising from interactions between breath metabolites and
multiple molecular receptors to establish a robust partial least-
squares discriminant analysis model for high throughput classifications. Crucially, spectral regions influencing classification
show strong corroboration with reported potential COVID-19 breath biomarkers, both through experiment and in silico. Our
strategy strives to spur the development of next-generation, noninvasive human breath diagnostic toolkits tailored for mass
screening purposes.
KEYWORDS: surface-enhanced Raman scattering (SERS), coronavirus disease 2019 (COVID-19),
breath volatile organic compounds (BVOCs), breathomics, mass screening

One of the key strategies to curb Coronavirus Disease
2019 (COVID-19) transmissions is to develop rapid
and accurate mass screening tools to identify

infectious yet asymptomatic individuals for isolation. These
screening tools complement polymerase chain reaction (PCR)
tests as they play a critical role in filtering out most healthy
individuals from the general population and avoid overloading of
PCR testing facilities which can otherwise retard pandemic
response. An emerging solution is the noninvasive breath test,
where breath volatile organic compounds (BVOCs) function as
COVID-19 specific biomarkers. Notably, recent studies have

shown that the coronavirus-induced immune responses and
metabolic changes can alter concentrations of BVOCs such as
aldehydes, ketones, and alcohols, enabling the identification of
COVID-positive individuals regardless of their symptoms.1−4
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Gas chromatography coupled mass spectrometry (GC−MS) is
the current gold standard used for concurrent separation and
identification of key compounds in the human breath.5−7

However, these instruments are typically costly and bulky,
making it less ideal to upscale and integrate as a mass screening
tool for on-site deployment. In addition, the need to exhale
directly into the instrument also creates a bottleneck in analysis
time where multiple breath collections and subsequent analyses
cannot be done in parallel. Hence, there is an urgent need to
develop a simple, portable, and inexpensive mass screening tool
that can analyze COVID-19 related BVOCs.
Herein, we design a surface-enhanced Raman scattering

(SERS)-based breathalyzer to distinguish BVOC profiles of
COVID-positive individuals, achieving >95% sensitivity and
specificity across 501 participants from clinical case-control
studies conducted in Singapore (Figure 1). Our breathalyzer
encompasses a SERS sensor that is nested within a custom-
made, hand-held, single-use breath chamber to facilitate the safe
collection of breath samples, with measurements performed on-
site using a portable Raman spectrometer. Participants are
simply required to blow continuously into the breath chamber
for 10 s and can receive their test result within 5 min, since there
is no need for any sample pretreatment (Figure 1; Figure S1).
Upon exposure to breath, molecular receptors with various
active chemical functionalities on our SERS sensor form
complementary receptor−BVOC interactions such as ion−
dipole interactions or hydrogen bonding with the diverse range
of BVOCs present. These interactions elicit specific spectral
variations, which can be serially combined as a SERS
“superprofile” to accentuate minute differences in BVOC
compositions between COVID-positive and COVID-negative
individuals. Scrutiny of their respective SERS superprofiles
reveal key spectral regions that are consistent with experimental
and in silico spectral changes observed when our sensor is
exposed to pure VOC vapors of potential COVID-19
biomarkers. Crucially, we demonstrate that these spectral
differences are independent of displayed COVID-19 symptoms
and other potential confounding factors such as participants’
age, gender, smoking habits, and time since their last meal. For
high throughput spectral analyses, we construct a classification
model using partial least-squares discriminant analysis (PLSDA)
that can be seamlessly incorporated with most Raman
measurement software to provide instantaneous results. In
addition, our workflow features decoupled sample collection

and measurement to allow maximum deployment flexibility in
practice. Overall, our study showcases the promising potential of
utilizing SERS-based sensors in the analysis and differentiation
of breath metabolites among infected and noninfected people to
achieve rapid and noninvasive disease detection. It signifies a
decisive step forward in the practical application of SERS for
next-generation, point-of-care diagnostic toolkits of other
respiratory and nonrespiratory diseases, not limited to
COVID-19.

RESULTS AND DISCUSSION

Fabrication and Characterization of Our Multirecep-
tor SERS Sensor. To effectively discriminate COVID-positive
breath profiles, we design multiple surface receptors on our
SERS sensor to induce a myriad of complementary intermo-
lecular interactions with the BVOCs present as the breath
sample flows through the breath chamber. Our sensor comprises
arrays of Ag nanocubes (edge length = 120 ± 5 nm, Figure S2)
with 4-mercaptobenzoate (MBA), 4-mercaptopyridine (MPY),
and 4-aminothiophenol (ATP) functionalized onto the nano-
cube surface as molecular receptors (Figure 1; Figure S3). The
multireceptor SERS sensor is strategically designed to possess
specific functional groups that can chemically interact with
BVOCs via hydrogen bonding, ion−dipole interactions and π−π
interactions to bring the gaseous analytes close to the plasmonic
surface.8,9 Our SERS sensor exhibits a high SERS analytical
enhancement factor of 1.4 × 1010, owing to strong electro-
magnetic enhancement from the sharp Ag nanocube edges and
intense inter-nanocube plasmonic coupling, which enables
ultrasensitive analyte detection (Figure S4; Supporting In-
formation 1).10 In addition, an excellent signal reproducibility of
<4% signal standard deviation ensures that our SERS measure-
ments are consistent and reproducible (Figure S5). The sensors
were subsequently assembled into single-use breath chambers
customized with infection control safety features that ensure
high safety and hygiene standards (refer to Materials and
Methods). We further demonstrate the robustness of our sensor,
which displays similar signal consistencies after sensor assembly
and over time, with no signs of nanocube oxidation even after
breath exposure (Figure S6). We also affirm that our SERS
sensor can detect various VOCs at their physiologically relevant
levels, as evidenced from the well-separated spectral clusters in
the principal component analysis (PCA) score plot (Figure S7).

Figure 1. Overview of our SERS-based strategy to identify COVID-positive individuals using their breath volatile organic compounds (BVOCs).
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SERS Spectral Investigations of COVID-Positive and
COVID-Negative Individuals.To investigate the ability of our
SERS sensor in differentiating COVID-positive and COVID-
negative breath profiles, we conducted a comparative case-
control clinical trial in Singapore involving 501 participants.
Participants were required to take a deep breath and exhale
continuously into a fresh breath chamber for 10 s under
supervision to collect alveolar air from deeper lung regions
which are involved in lung-blood VOC exchange (Figure
S1).7,11 Each blown breath chamber was allowed to incubate for
a minimum of 2 min to allow sufficient time for receptor−VOC
interactions to occur before measuring the SERS spectra using a
portable Raman spectrometer (Figure S8). The whole process
takes less than 5 min, which is crucial for application in mass
screenings. Subsequently, a nasopharyngeal swab specimen was
collected from the participants for a PCR test within 48 h of
breath collection as a benchmark to determine if they were
COVID-negative or COVID-positive. Of all the participants, 74
participants (14.8%) were classified as COVID-positive on the
basis of their PCR test results, with 31 being asymptomatic at the
point of testing (Figure 2A).
Scrutiny of the SERS spectra in the absence of breath

(denoted as “blank”, total 150 samples), presence of COVID-
positive breath (total 74 samples) and presence of COVID-
negative breath (total 427 samples) reveals several crucial
spectral differences, which clearly distinguish the breath
chemical profiles of COVID-positive and COVID-negative
individuals (Figure 2B). To gain qualitative insight on key
receptor−BVOC interactions behind these spectral differences,
we compare the observed breath-induced spectral differences
against individual SERS responses to several reported VOC
biomarkers in the breaths of COVID-positive patients. The
target VOCs of interest include methanol, ethanal, heptanal,
octanal, and acetone (Figure 2C).1−3 In addition, water vapor is
included to investigate its potential influence in the resulting
SERS signals. Briefly, the SERS sensor was separately incubated

with neat standards in closed systems to allow vaporization of
the respective VOC into an equilibrium state (Supporting
Information 2). For in-depth spectral analysis, we select three
spectral regions, namely, 490−550 cm−1 of MBA, 1560−1680
cm−1 of MPY, and 1050−1500 cm−1 of ATP (Figure 2B). It is
important to note that all investigated differences across blanks,
COVID-positive, and COVID-negative breath samples are
statistically different at 95% confidence level with p values
<0.05, using the Mann−Whitney rank-sum test (Materials and
Methods; Table S2). This indicates that the identified features
are relevant and can be utilized to differentiate COVID-positive
and COVID-negative individuals.
For MBA, we observe a decrease in peak intensity of the C−S

stretching (ν(CS)) peak at 521 cm−1, from 0.29± 0.03 in blanks
to 0.19 ± 0.05 and 0.22 ± 0.09 in the presence of COVID-
positive and COVID-negative breaths, respectively, with
COVID-positive samples exhibiting a larger decrease than
COVID-negative samples (Figure 3Aii,iii).12 The ν(CS) peak
intensity reflects the relative polarizability of the C−S bond and
changes when carbonyl compounds such as ethanal, heptanal,
octanal, and acetone form ion−dipole interactions or hydroxyl-
containing compounds such as methanol and water vapor form
hydrogen bonding with MBA, resulting in a redistribution of the
delocalized electron cloud (Figure 3Ai).13 Experimentally, a
decrease in ν(CS) peak intensity is observed upon separate
exposure to pure vapors of ethanal, heptanal, octanal, and
acetone, while an increase is observed upon exposure to
methanol and water (Figure 3Aiv, Table S3). This trend is in
good qualitative agreement with simulated SERS spectra
obtained using density functional theory (DFT), where ethanal,
heptanal, octanal, and acetone induce a 0.23−29% decrease,
while methanol and water vapor induce a 11−32% increase in
ν(CS) peak intensity (Table S3). The observation of a larger
decrease in ν(CS) peak intensity for COVID-positive breath
profiles is therefore consistent with lower methanol and higher
aldehyde (ethanal, heptanal, and octanal) levels reported in

Figure 2. SERS profiles of breath samples acquired through case-control clinical trials. (A) Schematic summary of COVID-19 infection status
and outward display of flu-like symptoms of 501 participants. (B) Representative SERS spectra of each molecular receptor (MBA, MPY, ATP)
in the absence (referred to as “blank”) and presence of COVID-positive and COVID-negative breath samples. Peaks of interest with in-depth
analysis are highlighted. A total of 150 blank, 74 COVID-positive, and 427 COVID-negative samples are measured. (C)Molecular structures of
reported COVID-19 breath biomarkers. The relative BVOC concentration changes in COVID-positive individuals compared to changes in
COVID-negative individuals are indicated by the arrows.
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literature.1−3 The general decrease in ν(CS) intensity for
samples exposed to breath indicates a stronger influence of ion−
dipole interactions in the C−S bond polarizability. As a result,
the effect of relative humidity in the exhaled breath samples on
the MBA ν(CS) peak intensity is minimal.
For MPY, we observe an increase in peak intensity ratio of

1586 and 1617 cm−1 (I1617/I1586), from 0.091 ± 0.011 in blanks
to 0.265 ± 0.116 and 0.477 ± 0.194 in the presence of COVID-
positive and COVID-negative breath, respectively, with
COVID-positive samples exhibiting a lower increase than
COVID-negative samples (Figure 3Bii,iii). The 1586 and
1617 cm−1 peak is indexed to the aromatic CC stretching
ν(CC) when the pyridine nitrogen is deprotonated and
protonated, respectively; hence I1617/I1586 describes the relative

amount of protonated pyridine species present.14 Before breath
exposure, MPY exists predominantly in the deprotonated state,
as indicated by the low I1617/I1586 in blank samples. After breath
exposure, pseudoprotonated pyridine species are formed
through hydrogen bonding between MPY and hydroxyl-
containing compounds such as methanol and water vapor,
resulting in an intensification of the 1617 cm−1 peak and an
increase in I1617/I1586 (Figure 3Bi).15,16 A similar increase in
I1617/I1586 is observed experimentally upon separate exposure to
pure vapors of methanol and water (Figure 3Biv; Figure S9). It
should be noted that exposure to carbonyl compounds such as
ethanal, heptanal, octanal, and acetone after incubation with
water vapor induces a slight reduction of the 1617 cm−1 peak
intensity; however, their respective I1617/I1586 remains higher

Figure 3. SERS analysis of breath samples of COVID-positive and COVID-negative participants. (A) (i) Illustration of ion−dipole interactions
between MBA-aldehydes and H-bonding with hydroxyl-containing compounds. (ii) 521 cm−1 SERS peak of MBA for blanks,COVID-positive,
and COVID-negative breath samples. (iii) Box plots comparing the 521 cm−1 peak intensity using the 1077 cm−1 peak intensity as an internal
standard. (iv) Bar charts describing experimental percentage change in the 521 cm−1 peak intensity upon exposure to selected pure vapors,
using the 1077 cm−1 peak as the internal intensity standard. (B) (i) Illustration of deprotonated and protonated MPY forming hydrogen bonds
with aldehydes and hydroxyl-containing compounds. (ii) MPY I1617/I1586 SERS peak intensity ratio for blanks, COVID-positive, and COVID-
negative breath samples. (iii) Box plots comparing the I1617/I1586 peak intensity ratios. (iv) Evolution of the 1550−1625 cm−1 region upon first
exposure to water vapor, followed by heptanal vapor. Intensities are normalized to the 1586 cm−1 peak. Schematic illustration of analyte-
induced changes in peak intensity ratios are included as inset. (C) (i) Illustration of increased laser-induced ATP dimerization to DMAB in the
presence of breath metabolites that serve as hot electron acceptors. (ii) ATP 1030−1600 cm−1 SERS spectral region for blanks, COVID-
positive, and COVID-negative breath samples. (iii) Box plots comparing the 1441 cm−1 peak intensity using the 1075 cm−1 peak intensity as an
internal standard. (iv) Box plots comparing the 1441 cm−1 peak intensity after exposure to selected pure vapors, using the 1075 cm−1 peak
intensity as an internal standard. All statistical significances, determined by theMann−Whitney rank sum test at p < 0.05 level, is indicated by *.
For all box plots, the mean and median are represented by the square box symbol and horizontal line, respectively. The main box covers the
lower to upper quartiles while the whiskers are extended to cover all data points that lie within ±1.5 interquartile range.
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than blank samples. The reduction is triggered by a decrease in
protonated pyridine species because carbonyl compounds
compete for protons to form protonated carbonyl species
(Figure 3Bi, Figure S9). The observation of a smaller increase in
I1617/I1586 for COVID-positive breath profiles is therefore well-
aligned with lower methanol and higher aldehyde (ethanal,
heptanal, and octanal) levels reported in literature.1−3

For ATP, the azobenzene NN stretching coupled with C−
H bending (ν(NN) + β(CH)) at 1441 cm−1 intensifies from
1.272 ± 0.116 in blanks to 1.339 ± 0.179 and 1.430 ± 0.187 in
the presence of COVID-positive and COVID-negative breath,
respectively, with COVID-positive samples registering a smaller
increase than COVID-negative samples (Figure 3Cii,iii). The
ν(NN) + β(CH) is a vibrational mode characteristic of p,p′-
dimercaptoazobenzene (DMAB) formed by laser-induced
dimerization of ATP.17 The observed intensification of the
ν(NN) + β(CH) peak can be attributed to increased and faster
ATP dimerization facilitated by VOCs present in breath, which
capture hot electrons generated by surface plasmon decay,
increasing the number of hot holes available to form DMAB
(Figure 3Ci).18−20 This explains similar intensity trends
observed for other characteristic DMAB peaks at 1143, 1186,
and 1393 cm−1 (Figure S10). With separate exposure to pure
vapors of ethanal, heptanal, octanal, acetone, methanol, and
water, we observe a similar increase in DMAB-associated peak
intensities at 1143 and 1441 cm−1 (Figure 3Civ; Figure S10).
The observation of a smaller increase in the ν(NN) + β(CH)
peak intensity for COVID-positive breath profiles is therefore in
good agreement with lower methanol and acetone levels
reported in the literature.1−3 Notably, the combined effect of
lower methanol and acetone levels is more pronounced than
elevated aldehyde (ethanal, heptanal, octanal) levels, suggesting
that the cumulative effect on ATP is likely to be dominated by
the former. It is important to note that in addition to the
aforementioned peaks, we also observe other spectral differences
including MBA’s ring breathing + C−S stretching (1077 cm−1),
MPY’s ring breathing (1014 cm−1) and C−H + N−H bending
(1224 cm−1), and ATP’s DMAB-associated peaks (1143, 1186,
and 1393 cm−1), which facilitate differentiation (Figures S11−
S13).
By establishing a strong correlation between observed

receptor spectral variances upon exposure to COVID-positive
and COVID-negative breath samples, as well as with pure vapors
of reported COVID-19 biomarkers, we affirm that our SERS
sensor effectively captures the distinct breath profile of a
COVID-positive individual. The nonspecific nature of our SERS
sensor effectively records the cumulative response of each
receptor to all BVOCs present, with each receptor exhibiting
pronounced spectral differences between COVID-positive and
COVID-negative individuals. When the different SERS
responses of individual receptors are combined, these spectral
changes can reinforce one another to form characteristic SERS
“breath-prints” that can be used as specialized identifiers of an
individual’s COVID-19 infection status. Such a recognition
technique is highly advantageous because it eliminates the need
to isolate and identify individual components for class
differentiation, which is tedious and cumbersome.
Rapid COVID-19 Classification Using Partial Least-

Squares Discriminant Analysis. With an in-depth under-
standing of the spectral regions contributing to the differ-
entiation of breath profiles based on their COVID-19 infection
status, we construct a binary classification model using partial
least-squares discriminant analysis (PLSDA) to achieve rapid,

high throughput analyses. PLSDA is an established technique
that maximizes and combines the largest SERS spectral
covariances between different data sets as latent variables
(LVs) to achieve maximum differentiation between COVID-19-
positive and COVID-19-negative breath profiles.21−23 In
addition, the algorithm requires minimal computational power
and produces classification scores that are easily comprehen-
sible, making it particularly suitable for our application as a mass
screening tool. Before the PLSDA model is constructed, SERS
spectra derived from all three receptors are baseline corrected,
normalized, and concatenated as a single SERS superprofile
(Figure 4D). Each SERS superprofile effectively harnesses
spectral variances arising from receptor−BVOC interactions,
creating an additive effect that enhances the differentiation of

Figure 4. Partial least-squares discriminant analysis (PLSDA) for
rapid, high throughput classification of breath profiles based on
their COVID-19 infection status. (A) PLSDA score plot derived
from the classification of individual SERS superprofiles showing
clear distinction between the breath profiles of COVID-positive and
COVID-negative individuals. Inset shows the zoomed-in segment of
the PLSDA score plot for COVID-positive individuals, illustrating
that symptoms do not affect their classification scores. (B) PLSDA
score plot of the first two latent variables (LVs), highlighting the
influence of LV 2 in classifying COVID-positive and COVID-
negative individuals. (C) PLSDA loadings plot for the first two LVs
to illustrate specific receptor vibrational modes which influence the
classification of COVID-positive and COVID-negative individuals.
(D) Scheme depicting the formation of SERS superprofiles using
spectral information from multiple receptors to increase the data
dimensionality. (E) Summary table comparing the classification
sensitivity and specificity for an increasing number of receptors
using averaged classification outcomes across 50 model iterations.
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COVID-positive and COVID-negative classes. Next, a random
stratified sampling algorithm is used to split the data set into a
train set and prediction set comprising 80% and 20% of the
original data set, respectively, over 50 different iterations to
generate 50 classification outcomes with each prediction set.
Such iterations minimize any potential issues with selection bias,
chance classification outcomes, and model overfit.24,25

Overall, the PLSDA model achieves an average classification
sensitivity of 96.2% and specificity of 99.9% when distinguishing
COVID-positive and COVID-negative breath profiles (Figure
4A, Table S4, Supporting Information 3). Using triplicate
breaths, we affirm that our PLSDA model classification is
reproducible and consistent (Figure S14). The low average false-
negative rate of 3.8% is superior to commercially available
antigen rapid tests with reported false-negative rates of 10−30%
and is comparable to PCR tests given similar sample sizes.26−28

Notably, asymptomatic COVID-positive individuals can be
accurately classified, indicating that characteristic BVOC
changes do occur and can be detected regardless of symptoms
(Figure 4A inset). This is consistent with recent studies
reporting that the lack of symptoms does not preclude internal
physiological changes.29,30 Timely detection of such asympto-
matic individuals through active mass screening is especially
critical to disrupt the silent viral spread into local communities
that often remains undetected until a massive outbreak occurs.
We further use the PLSDA score and loadings plot to

highlight how different receptor spectral regions influence the
classification outcome, so as to establish a robust relationship
between the classification results and previously identified
regions which showed distinct differences (Figure 4B,C). The
first two LVs of are important in describing regions that
contribute to the largest variances between the two classes.31,32

From the score plot, we observe that COVID-positive breath
samples typically showmore positive LV 2 scores while COVID-
negative breath samples showmore negative LV 2 scores (Figure
4B). We note that the distribution of data points along LV 1 for
both class groups is due to intraclass variances, which can be
attributed to variations in BVOC concentrations among
different individuals.33 Nonetheless, this does not affect the
COVID-positive/negative clustering along LV 2. In combina-
tion with the loadings plot, we can then correlate spectral regions
which are assigned positive LV 2 scores as regions contributing
more significantly to a COVID-positive classification outcome,
and vice versa (Figure 4C). For instance, MBA’s C−S stretching
(1077 cm−1), MPY’s ring breathing (1014 cm−1) and CC
stretching (deprotonated N) (1586 cm−1), and ATP’s C−H
bending + C−N stretching (1143 cm−1) and C−H bending
(1186 cm−1) are assigned positive LV 2 scores. This signifies that
the cumulative effect of peak intensity and/or peak position
variances from these vibrational modes contribute to the
classification of a breath profile as COVID-positive. On the
other hand, MBA’s C−S stretching (521 cm−1), MPY’s C−H +
N−H bending (1224 cm−1) and CC stretching (protonated
N), and ATP’s NN + C−N stretching (1393 cm−1) and N
N stretching + C−H bending (1441 cm−1) are assigned negative
LV 2 scores and therefore are crucial in classifying COVID-
negative breath profiles. This thus affirms that the amalgamation
of multiple receptor spectral changes in our SERS superprofiles
are important in assigning the COVID-positive or COVID-
negative class. Furthermore, it proves that our model is built
upon valid spectra variances arising from chemical interactions
between receptor−BVOC and the change in BVOC concen-
trations and not spectral noise.

To emphasize the importance of the multireceptor SERS
superprofile, we demonstrate the distinct sensitivity improve-
ment from 80 to 96.2% when comparing a single SERS receptor
with our SERS superprofile sensor (Figure 4E, Table S4,
Supporting Information 3). An increase in the number of
correctly classified COVID-positive breath profiles can be
observed as the number of receptors increases from one to three.
This increase exemplifies that each receptor imbues enhanced
distinguishing capabilities to our SERS sensor by increasing the
total number of distinct features between the breath profiles of
COVID-positive and COVID-negative individuals. Such an
approach is critical for complex sample matrices to allow our
SERS sensor to record a more complete description of the
differences in breath profiles. Notably, a high specificity can be
achieved even with a single receptor as it is comparatively easier
to distinguish a sensor that is exposed to breath, than accurately
identifying a COVID-positive breath profile.

Detailed Model Analysis in Relation to Clinical Test
Results. Through rigorous analysis of our clinical trial results,
we highlight the key strengths of our SERS sensor based on its
performance given a specific use case. The overall sensitivity of
96.2% (95% CI: 91.8−100%) and specificity of 99.9% (95% CI:
99.7−100%) can be derived by constructing a confusion matrix
using the averaged classification outcomes across 50 model
iterations (Figure 5A). Both the positive and negative predictive
values (PPV and NPV) are >99%, indicating high accuracy of
our PLSDA model in predicting the presence of COVID-19 at
the disease prevalence of our clinical studies.34 When
considering the model sensitivity in relation to displayed
COVID-19 symptoms, we note that our model shows high
sensitivities of 97.7% and 93.6% for both symptomatic and
asymptomatic individuals, respectively (Figure 5B). The slightly
lower sensitivity when identifying asymptomatic COVID-
positive individuals could be due to the limited sample size of
31 participants. To enhance the ability of our sensor in picking
up asymptomatic COVID-positive individuals, it is essential to
collect more data so as to elucidate spectral features, which are
important for their classification. In addition, out of 70
participants with reported comorbidities including asthma and
thyroid dysfunctions (4 COVID-positive, 66 COVID-negative),
all 70 participants are accurately classified in their respective
COVID-19 infection status (Figure S15). This indicates that the
presence of pre-existing medical conditions does not affect the
prediction outcome of our SERS breathalyzer.
Importantly, we demonstrate good representation of

individuals at various stages of COVID-19 infection in our
clinical trial with PCR cycle threshold (Ct) values ranging from
<15 to >40 (Figure 5Ci). The PCR Ct value indicates the
relative viral load in an infected individual, whereby a low Ct
value is equivalent to a high viral load. Notably, the high
sensitivity of our SERS sensor across a large range of Ct values
indicates that there are distinct BVOC differences for all
COVID-positive individuals regardless of the viral load in their
bodies (Figure 5Cii). This is crucial in ensuring our breath-
alyzer’s effectiveness in picking up infected individuals across all
stages of infection, as these individuals may still be potentially
infectious.35−37

In addition, we ascertain that other potential confounding
factors such as age, gender, smoking habits, and time since the
last meal do not significantly influence our classification, by
employing the t test and χ2 test (Figure 5D−F). Given a mean
age of 41± 14 years old for COVID-positive participants and 43
± 13 years old for COVID-negative participants, age did not
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significantly influence our classification at the 95% confidence
level (t = 1.00, p = 0.32). Similarly, the gender distribution of 50
males and 24 females across COVID-positive participants and
239 males and 186 females across COVID-negative participants
did not affect our classification (χ2 = 3.32, p = 0.068). When
investigating the effect of smoking habits, since only 6 COVID-
positive and 90 COVID-negative participants smoke, we set a
higher critical value of p = 0.01. At a 99% confidence level, the
participants’ smoking habits (χ2 = 5.64, p = 0.018) did not
impact our classifications. However, a larger sample size is likely
necessary in order to arrive at a more statistically robust
conclusion for this factor. In terms of the time elapsed since the
participants’ last meal, there is significant imbalance as most
COVID-positive participants (58 out of 66) did not consume
any food for >6 h prior to the breathalyzer test (Figure 5Fi). This
resulted in a significant difference between the average time
since the last meal (t = 12.57, p < 0.00001) for COVID-positive
and COVID-negative participants. This difference stems from
an inherent limitation in operational protocol, as breath samples
were typically collected from COVID-positive individuals by
nurses before their breakfast at a specified timing. In contrast,
breath samples from COVID-negative individuals were
collected after disembarking from a flight, which had meals
provided, with no restrictions as to when they are allowed to
consume any food. Nonetheless, we note that even with such an
imbalance, the high classification specificity of 99.9% is a clear
indicator that the differences between COVID-positive and
COVID-negative breath samples were much more pronounced
compared to any differences in breath composition resulting
from food consumption (Figure 5Fii).

CONCLUSION
In conclusion, we showcase our design of a SERS-based
breathalyzer for rapid, noninvasive screening of individuals for
COVID-19, achieving a sensitivity of 96.2% and specificity of
99.9%. Through the strategic use of multiple molecular
receptors to capture and interact with various BVOCs in
exhaled breath, we generate highly informative SERS super-
profiles that harness each receptor’s distinguishing power.
Fundamentally, we establish good qualitative agreement
between our observed SERS spectral variances with those
induced by pure VOC vapors of several potential COVID-19
biomarkers. The in-depth understanding of these spectral
differences allows us to construct a robust PLSDA model
which attains a false negative rate superior to commercially
available antigen rapid tests and comparable to that of PCR tests.
In addition, the classification accuracy is independent of whether
the individual displays COVID-19-related symptoms and other
confounding factors such as age, gender, and smoking habits
before breath collection. Most importantly, our test is simple,
easy to administer, and requires only 5 min from sample
collection to output of results for rapid turnover. As the world
adjusts to a new normal, government strategies are shifting
toward scaling up of COVID-19 testing, contact tracing, and
vaccination. In this aspect, our breathalyzer can play a significant
role in fulfilling this goal by supporting mass screening
capabilities even at locations with high human traffic. Breath
collection and measurements can be performed in parallel,
which overcomes the current bottleneck in conventional GC−
MS methods for breath analysis, making it suitable for testing in
diverse settings and locations like schools, airports, and events
like weddings, religious events, and conferences. Moreover, our
findings from this work lay the foundation for next-generation

Figure 5. Detailed analysis of clinical trial results. (A) Confusion
matrix of the averaged classification outcomes across 50 model
iterations. Values in green and brown indicate correct and incorrect
classification outcomes, respectively. Actual values before rounding
off are given in gray brackets. The sensitivity, specificity, positive,
and negative prediction values are in blue, with their corresponding
95% confidence intervals in gray brackets directly below. (B)
Scheme depicting the sensitivity of our sensor in the classification of
symptomatic and asymptomatic COVID-positive individuals. (C)
Histogram depicting (i) the number of COVID-positive participants
based on their respective cycle threshold (Ct) values determined by
a PCR test and (ii) the model sensitivity at each Ct range. (D)
Scheme describing participant demographics such as their mean
age, gender, and smoking habits. (E) Summary table describing the
statistical test results of potential confounding factors such as
participants’ age, gender, smoking habits, and time since the last
meal using either the t test or χ2 test, with their corresponding p-
value. (F) Analysis of time since the last meal as a potential
confounding factor based on (i) distribution of time since last meal
of all participants (a small number of participants were unable to
recall this information (denoted as NA) and (ii) the model
sensitivity and specificity at each time range.
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breath-based detection of other respiratory and/or non-
respiratory related diseases using SERS.

MATERIALS AND METHODS
Chemicals. Silver nitrate, 1,5-pentanediol (PD), poly-

(vinylpyrrolidone) (PVP; Mw ∼ 55,000), 4-mercatopyridine (MPY),
4-mercaptobenzoic acid (MBA), 4-aminothiophenol (ATP), ethanal,
heptanal, and octanal were purchased from Sigma-Aldrich. Copper(II)
chloride was purchased from Alfa Aesar. Ethanol (ACS, ISO, Reag. Ph
Eur) was obtained from Merck. Methanol (≥99.8%, Reag. Ph Eur,
gradient grade for HPLC) was obtained from VWRChemicals. Milli-Q
water (>18.0 MΩ cm) was purified with a Sartorius Arium 611 UV
ultrapure water system. All reagents were used without further
purification.
Synthesis and Purification of Silver Nanocubes. Ag nanocubes

were synthesized via the polyol method described in literature.38

Briefly, 0.50 g of silver nitrate and 0.86 μg of copper(II) chloride were
dissolved in PD in a scintillation vial. Separately, 0.25 g of PVP was
dissolved in PD. Using a temperature-controlled silicone oil bath, 20
mL of PDwas heated for 10min. The two precursor solutions were then
injected into the hot reaction flask at different rates: 500 μL of silver
nitrate solution every minute and 250 μL of PVP solution every 30 s.
This addition was stopped once the solution turned ochre. The Ag
nanocubes were purified via several rounds of centrifugation and
subsequently stored in ethanol. Scanning electron microscopic (SEM)
imaging was carried out using JEOL-JSM-7600F electronmicroscope at
an accelerating voltage of 5 kV.
Thiophenol Functionalization of Ag Nanocubes. Functional-

ization of Ag nanocube surfaces was performed through individual
ligand exchange reactions. A 50 μL aliquot of 10 mM thiophenol
solution (MPY, MBA, ATP) was separately added to 1 mL of Ag
nanocubes, and the mixture was allowed to stir overnight. The
functionalized Ag nanocubes were then purified via centrifugation and
dispersed in 1 mL ethanol.39

Sensor Chip and Breathalyzer Fabrication. An automated
liquid dispensing system (Y&D 7300N Smart Robot; Y&DTechnology
Co. Ltd.) was used to dispense the functionalized Ag nanocubes. The
functionalized Ag nanocubes were first dispersed in aqueous solutions,
carefully loaded into the dispensing system, and then precisely
dispensed onto an aluminum plate. The dispensed Ag nanocubes
were then allowed to dry under controlled conditions (24 °C with
relative humidity of 40%). SERS signals of the dried droplets were
measured to ensure sensor chip signal reproducibility and consistency
before they were individually assembled into a breathalyzer. The
assembled breathalyzer and an accompanying cap were vacuum-sealed
prior to its usage during clinical trials.
Breath Sample Collection. Participants aged between 18 and 99

were recruited at multiple study sites for clinical trials, including the
National Center for Infectious Diseases and Changi International
Airport in Singapore. All recruitment protocols were covered under
NTU’s IRB-2020-12-012 and IRB-2021-03-046. Study participants
were adequately briefed regarding the research goals and aims, and their
consent was sought prior to sample collection (Figure S1). All
breathalyzers were deidentified from the study participants with the use
of specialized subject identification numbers. During sample collection,
a sealed vacuum package containing the breathalyzer was handed to the
participant. The participant was directed to blow gently and
continuously into the breathalyzer mouthpiece for 10 s before affixing
the safety cap. The breathalyzer was then disinfected with 70% ethanol
before SERS measurement. Each breathalyzer is fitted with medical
grade HEPA filter at the outlet to isolate any pathogens present within
the breath chamber and prevent escape into the external environment.
Each participant exhaled into a breathalyzer that is assigned to them.
SERS Measurement of Breath Samples. SERS measurements

were conducted using the portable Metrohm Raman spectrometer
(Mira DS) with an excitation wavelength of 785 nm, laser power of 50
mW and an acquisition time of 0.05 s. Each SERS spectrum is the
average of 5 raster scans (2.5 mm raster scan size), to collect SERS
spectra over a large interrogation area. The spectral window of 400−

1800 cm−1 was used for data analyses. Spectral preprocessing includes
baseline correction using the adaptive iteratively reweighted penalized
least-squares (airPLS) algorithm and min−max normalization.40 The
processed SERS spectra from all three receptors were then
concatenated into a SERS superprofile representing the breath profile
of a participant. A total of 501 superprofiles were collected1 from
each participant.

Model Building. The partial least-squares discriminant analysis
(PLSDA) models were constructed using the Python-based scikit-learn
package.41 In one iteration, data were first split into a 80% train and 20%
test set using random state = 1. The train set was optimized and cross-
validated using a k-fold cross-validation algorithm, with k = 10. Root-
mean-squared errors resulting from the train set classification and
averaged cross-validation classifications were derived and used to
determine the number of latent variables selected for a PLSDA model.
The test set was then used to assess the outcome of our classification
model through calculating its sensitivity and specificity. This process
was then repeated for an additional 49 iterations using random states
2−50 to derive the averaged sensitivity and specificity of our SERS
sensor.

SERS Measurements of Pure Analyte Vapor. The SERS sensor
is incubated separately with 200 μL of a target analyte at 35 °C in an
enclosed 20 mL vial. SERS detection was performed after 6 h of
incubation using the same spectrometer system, measurement
parameters and data preprocessing. Equilibrium vapor concentrations
are calculated in Supporting Information 2. For detection at low VOC
concentrations, a vapor generator (Vertical Owlstone Vapor Generator,
OwlstoneMedical) is used to supply a constant, controlled VOC flow at
ppb levels.

Participant Statistics. Participant statistics for categorical variables
such as age and gender were presented as number (%). Continuous
variables such as intensity ratios were presented as mean ± standard
deviation. The statistical significance of each variable between blanks
and COVID-positive, blanks and COVID-negative, and COVID-
positive and COVID-negative were assessed with the Mann−Whitney
rank sum test. All tests were two-tailed with p < 0.05 as the significance
threshold. Calculations were performed using the OriginPro 9.0
software. The statistical significance of each confounding factor on the
classification was assessed using either a t test (for continuous variable)
or a χ2 test (categorical variable). The choice of statistical test depends
on several parameters including the variable type (categorical/
continuous) and distributions (normal/non-normal).

Density Functional Theory (DFT) Simulations.The calculations
on the interaction of the Ag surface with various target analyte
molecules were carried out using the unrestricted B3LYP exchange−
correlation functional, as implemented in the Gaussian 09 computa-
tional chemistry package. The 6-31G(d,p) basis set was used for all
atoms except Ag, for which the LANL2DZ basis set was employed. The
Ag surface was modeled using a reported triangle consisting of 6 Ag
atoms.42 After geometry optimization of the triangular Ag cluster, each
target analyte molecule was then placed near the Ag cluster (<2 Å) and
the entire system was reoptimized before obtaining the simulated
spectra.

Characterization. Scanning electron microscope (SEM) imaging
was performed using JEOL-JSM-7600F microscope. UV−vis spectra
were measured using SHIMADZU UV-3600 UV−vis−NIR spectro-
photometer.

ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsnano.1c09371.

Participant recruitment workflow, Ag nanocube SEM and
UV−vis characterization, full peak assignments, analytical
enhancement factor calculations, sensor chip reproduci-
bility and stability, PCA score plots of VOCs at different
concentrations and different breath incubation times,
VOC vapor concentration calculations, additional peak

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.1c09371
ACS Nano XXXX, XXX, XXX−XXX

H

https://pubs.acs.org/doi/suppl/10.1021/acsnano.1c09371/suppl_file/nn1c09371_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.1c09371/suppl_file/nn1c09371_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsnano.1c09371?goto=supporting-info
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.1c09371?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


analysis for MPY, ATP, and MBA, DFT calculations for
MBA, individual PLSDA sensitivity and specificity
metrics, sample sensitivity and specificity calculations
(PDF)

AUTHOR INFORMATION
Corresponding Author
Xing Yi Ling − Division of Chemistry and Biological Chemistry,
School of Physical and Mathematical Sciences, Nanyang
Technological University, Singapore 637371, Singapore;
orcid.org/0000-0001-5495-6428; Email: xyling@

ntu.edu.sg

Authors
Shi Xuan Leong − Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore 637371,
Singapore

Yong Xiang Leong − Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore 637371,
Singapore

Emily Xi Tan−Division of Chemistry and Biological Chemistry,
School of Physical and Mathematical Sciences, Nanyang
Technological University, Singapore 637371, Singapore

Howard Yi Fan Sim − Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore 637371,
Singapore

Charlynn Sher Lin Koh−Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore 637371,
Singapore

Yih Hong Lee − Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore 637371,
Singapore

Carice Chong − Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore 637371,
Singapore

Li Shiuan Ng−Division of Chemistry and Biological Chemistry,
School of Physical and Mathematical Sciences, Nanyang
Technological University, Singapore 637371, Singapore

Jaslyn Ru Ting Chen − Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore 637371,
Singapore

Desmond Wei Cheng Pang − Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore
637371, Singapore

Lam Bang Thanh Nguyen − Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore
637371, Singapore

Siew Kheng Boong − Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore 637371,
Singapore

Xuemei Han− Division of Chemistry and Biological Chemistry,
School of Physical and Mathematical Sciences, Nanyang
Technological University, Singapore 637371, Singapore

Ya-Chuan Kao − Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore 637371,
Singapore

Yi Heng Chua − Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore 637371,
Singapore

Gia Chuong Phan-Quang − Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore
637371, Singapore; Silver Factory Technology Pte. Ltd.,
Singapore 169203, Singapore

In Yee Phang − Silver Factory Technology Pte. Ltd., Singapore
169203, Singapore

Hiang Kwee Lee − Division of Chemistry and Biological
Chemistry, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore 637371,
Singapore; orcid.org/0000-0003-0823-4111

Mohammad Yazid Abdad − Infectious Diseases Research
Laboratory, National Centre for Infectious Diseases, Singapore
308442, Singapore; Centre for Tropical Medicine and Global
Health, Nuffield Department of Medicine, University of
Oxford, Oxford OX3 7LG, U.K.; Faculty of Tropical Medicine,
Mahidol University, Bangkok 10400, Thailand

Nguan Soon Tan − Lee Kong Chian School of Medicine,
Nanyang Technological University, Singapore 308232,
Singapore; School of Biological Sciences, Nanyang
Technological University, Singapore 637551, Singapore

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsnano.1c09371

Author Contributions
The manuscript was written through contributions of all
authors.

Author Contributions
¶S.X.L. and Y.X.L. contributed equally.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research is supported by National Medical Research
Council, Singapore under COVID-19 Research Fund (MOH-
COVID19RF-0007 and MOH-COVID19RF-0012), A*STAR
Singapore, AME Individual Research Grant (A20E5c0082) and
Max Planck Institute-Nanyang Technological University Joint
Lab. S.X.L and L.B.T.N. acknowledge Nanyang Presidential
scholarship support from Nanyang Technological University,
Singapore. We thank Singapore Ministry of Health, Ministry of
Transport, the National Center for Infectious Diseases (NCID),
Singapore, Certis Cisco, Singapore, and Changi Airport Group,
Singapore, for their support in arranging access to breath
samples, in particular, Dr. Shawn Vasoo, Prof. Leo Yee Sin, Prof.
Raymond Lin, Siti Nurdiana Abas, NurhidayahMohamed Yazid,
Ong Jin Ting, Ivana Stevani, K. Renganathan, Amanda Tan, and
Benjamin Goy from NCID, Lian Kay Wee and Sim Pei Wen
from Changi Airport Group, Seah Hock Chye, Goh Ming Xuan,
Joy Kwan, and Patrick Teo from Certis Cisco, as well as the
student volunteers from Nanyang Technological University,
Singapore, for their help in recruiting participants.

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.1c09371
ACS Nano XXXX, XXX, XXX−XXX

I

https://pubs.acs.org/doi/suppl/10.1021/acsnano.1c09371/suppl_file/nn1c09371_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xing+Yi+Ling"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-5495-6428
https://orcid.org/0000-0001-5495-6428
mailto:xyling@ntu.edu.sg
mailto:xyling@ntu.edu.sg
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shi+Xuan+Leong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yong+Xiang+Leong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Emily+Xi+Tan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Howard+Yi+Fan+Sim"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Charlynn+Sher+Lin+Koh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yih+Hong+Lee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Carice+Chong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Li+Shiuan+Ng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jaslyn+Ru+Ting+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Desmond+Wei+Cheng+Pang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lam+Bang+Thanh+Nguyen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Siew+Kheng+Boong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xuemei+Han"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ya-Chuan+Kao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yi+Heng+Chua"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gia+Chuong+Phan-Quang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="In+Yee+Phang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hiang+Kwee+Lee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-0823-4111
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mohammad+Yazid+Abdad"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nguan+Soon+Tan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.1c09371?ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.1c09371?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


REFERENCES
(1) Chen, H.; Qi, X.; Ma, J.; Zhang, C.; Feng, H.; Yao, M. Breath-
Borne VOC Biomarkers for COVID-19.medRxiv 2020, DOI: 10.1101/
2020.06.21.20136523.
(2) Grassin-Delyle, S.; Roquencourt, C.; Moine, P.; Saffroy, G.; Carn,
S.; Heming, N.; Fleuriet, J.; Salvator, H.; Naline, E.; Couderc, L.-J.;
Devillier, P.; Thévenot, E. A.; Annane, D. Metabolomics of Exhaled
Breath in Critically Ill COVID-19 Patients: A Pilot Study. EBioMedicine
2021, 63, 103154.
(3) Ruszkiewicz, D. M.; Sanders, D.; O’Brien, R.; Hempel, F.; Reed,
M. J.; Riepe, A. C.; Bailie, K.; Brodrick, E.; Darnley, K.; Ellerkmann, R.;
Mueller, O.; Skarysz, A.; Truss, M.; Wortelmann, T.; Yordanov, S.;
Thomas, C. L. P.; Schaaf, B.; Eddleston, M. Diagnosis of COVID-19 by
Analysis of Breath with Gas Chromatography-Ion Mobility Spectrom-
etry - A Feasibility Study. EClinicalMedicine 2020, 29, 100609.
(4) Gupta, A.; Madhavan, M. V.; Sehgal, K.; Nair, N.; Mahajan, S.;
Sehrawat, T. S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J. C.; Wan, E. Y.;
Freedberg, D. E.; Kirtane, A. J.; Parikh, S. A.; Maurer, M. S.; Nordvig, A.
S.; Accili, D.; Bathon, J. M.; Mohan, S.; Bauer, K. A.; Leon, M. B.;
Krumholz, H. M.; Uriel, N.; Mehra, M. R.; Elkind, M. S. V.; Stone, G.
W.; Schwartz, A.; Ho, D. D.; Bilezikian, J. P.; Landry, D. W.
Extrapulmonary Manifestations of COVID-19. Nat. Med. 2020, 26,
1017−1032.
(5) Cao, W.; Duan, Y. Current Status of Methods and Techniques for
Breath Analysis. Crit. Rev. Anal. Chem. 2007, 37, 3−13.
(6) Kim, K. H.; Jahan, S. A.; Kabir, E. A Review of Breath Analysis for
Diagnosis of Human Health. TrAC, Trends Anal. Chem. 2012, 33, 1−8.
(7) Lawal, O.; Ahmed, W. M.; Nijsen, T. M. E.; Goodacre, R.; Fowler,
S. J. Exhaled Breath Analysis: A Review of ‘Breath-Taking’Methods for
Off-Line Analysis. Metabolomics 2017, 13, 110.
(8) Lee, H. K.; Lee, Y. H.; Koh, C. S. L.; Phan-Quang, G. C.; Han, X.;
Lay, C. L.; Sim, H. Y. F.; Kao, Y.-C.; An, Q.; Ling, X. Y. Designing
Surface-Enhanced Raman Scattering (SERS) Platforms Beyond
Hotspot Engineering: Emerging Opportunities in Analyte Manipu-
lations and Hybrid Materials. Chem. Soc. Rev. 2019, 48, 731−756.
(9) Leong, Y. X.; Lee, Y. H.; Koh, C. S. L.; Phan-Quang, G. C.; Han,
X.; Phang, I. Y.; Ling, X. Y. Surface-Enhanced Raman Scattering
(SERS) Taster: A Machine-Learning-Driven Multireceptor Platform
for Multiplex Profiling of Wine Flavors. Nano Lett. 2021, 21, 2642−
2649.
(10) Koh, C. S. L.; Lee, H. K.; Han, X.; Sim, H. Y. F.; Ling, X. Y.
Plasmonic Nose: Integrating the MOF-Enabled Molecular Preconcen-
tration Effect with a Plasmonic Array for Recognition of Molecular-
Level Volatile Organic Compounds. Chem. Commun. 2018, 54, 2546−
2549.
(11) Sethi, S.; Nanda, R.; Chakraborty, T. Clinical Application of
Volatile Organic Compound Analysis for Detecting Infectious Diseases.
Clin. Microbiol. Rev. 2013, 26, 462−75.
(12) Capocefalo, A.; Mammucari, D.; Brasili, F.; Fasolato, C.; Bordi,
F.; Postorino, P.; Domenici, F. Exploring the Potentiality of a SERS-
Active pH Nano-Biosensor. Front. Chem. 2019, 7, 413.
(13)Wang, Y.; Ji,W.; Sui, H.; Kitahama, Y.; Ruan,W.; Ozaki, Y.; Zhao,
B. Exploring the Effect of Intermolecular H-Bonding: A Study on
Charge-Transfer Contribution to Surface-Enhanced Raman Scattering
of P-Mercaptobenzoic Acid. J. Phys. Chem. C 2014, 118, 10191−10197.
(14) Guerrini, L.; Rodriguez-Loureiro, I.; Correa-Duarte, M. A.; Lee,
Y. H.; Ling, X. Y.; García de Abajo, F. J.; Alvarez-Puebla, R. A. Chemical
Speciation of Heavy Metals by Surface-Enhanced Raman Scattering
Spectroscopy: Identification and Quantification of Inorganic- and
Methyl-Mercury in Water. Nanoscale 2014, 6, 8368−8375.
(15) Bi, L.; Wang, Y.; Yang, Y.; Li, Y.; Mo, S.; Zheng, Q.; Chen, L.
Highly Sensitive and Reproducible SERS Sensor for Biological pH
Detection Based on a Uniform Gold Nanorod Array Platform. ACS
Appl. Mater. Interfaces 2018, 10, 15381−15387.
(16) Wang, Y.; Yu, Z.; Ji, W.; Tanaka, Y.; Sui, H.; Zhao, B.; Ozaki, Y.
Enantioselective Discrimination of Alcohols by Hydrogen Bonding: A
SERS Study. Angew. Chem., Int. Ed. 2014, 53, 13866−13870.
(17) Xu, P.; Kang, L.; Mack, N. H.; Schanze, K. S.; Han, X.; Wang, H.-
L.Mechanistic Understanding of Surface Plasmon Assisted Catalysis on

a Single Particle: Cyclic Redox of 4-Aminothiophenol. Sci. Rep. 2013, 3,
2997.
(18) Huang, Y.-F.; Zhu, H.-P.; Liu, G.-K.; Wu, D.-Y.; Ren, B.; Tian, Z.-
Q. When the Signal Is Not from the Original Molecule to Be Detected:
Chemical Transformation of Para-Aminothiophenol on Ag During the
SERS Measurement. J. Am. Chem. Soc. 2010, 132, 9244−9246.
(19) Liu, Y.; Yang, D.; Zhao, Y.; Yang, Y.; Wu, S.; Wang, J.; Xia, L.;
Song, P. Solvent-Controlled Plasmon-Assisted Surface Catalysis
Reaction of 4-Aminothiophenol Dimerizing to p,p’-Dimercaptoazo-
benzene on Ag Nanoparticles. Heliyon 2019, 5, e01545.
(20)Wu, D.-Y.; Zhao, L.-B.; Liu, X.-M.; Huang, R.; Huang, Y.-F.; Ren,
B.; Tian, Z.-Q. Photon-DrivenCharge Transfer and Photocatalysis of P-
Aminothiophenol in Metal Nanogaps: A DFT Study of SERS. Chem.
Commun. 2011, 47, 2520−2522.
(21) Barker, M.; Rayens, W. Partial Least Squares for Discrimination.
J. Chemom. 2003, 17, 166−173.
(22) Brereton, R. G.; Lloyd, G. R. Partial Least Squares Discriminant
Analysis: Taking the Magic Away. J. Chemom. 2014, 28, 213−225.
(23) Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic
Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109−130.
(24) Westerhuis, J. A.; Hoefsloot, H. C. J.; Smit, S.; Vis, D. J.; Smilde,
A. K.; van Velzen, E. J. J.; van Duijnhoven, J. P. M.; van Dorsten, F. A.
Assessment of PLSDA Cross Validation.Metabolomics 2008, 4, 81−89.
(25) Xu, Q.-S.; Liang, Y.-Z. Monte Carlo Cross Validation. Chem.
Intell. Lab. Syst. 2001, 56, 1−11.
(26) Fouzas, S. SARS-CoV-2 Rapid Antigen Detection Tests. Lancet.
Infect. Dis. 2021, 21, 1068−1069.
(27) Wikramaratna, P.; Paton, R. S.; Ghafari, M.; Lourenco̧, J.
Estimating False-Negative Detection Rate of SARS-CoV-2 by RT-PCR.
medRxiv 2020, DOI: 10.1101/2020.04.05.20053355v3.
(28) Xie, X.; Zhong, Z.; Zhao, W.; Zheng, C.; Wang, F.; Liu, J. Chest
Ct for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia:
Relationship to Negative RT-PCR Testing. Radiology 2020, 296, E41−
E45.
(29) Chang, M. C.; Lee, W.; Hur, J.; Park, D. Chest Computed
Tomography Findings in Asymptomatic Patients with COVID-19.
Respiration 2020, 99, 748−754.
(30) Meng, H.; Xiong, R.; He, R.; Lin, W.; Hao, B.; Zhang, L.; Lu, Z.;
Shen, X.; Fan, T.; Jiang, W.; Yang, W.; Li, T.; Chen, J.; Geng, Q. CT
Imaging and Clinical Course of Asymptomatic Cases with COVID-19
Pneumonia at Admission inWuhan, China. J. Infect. 2020, 81, e33−e39.
(31) Goodpaster, A. M.; Kennedy,M. A. Quantification and Statistical
Significance Analysis of Group Separation in NMR-Based Metabo-
nomics Studies. Chemom. Intell. Lab. Syst. 2011, 109, 162−170.
(32) Xia, J.; Sinelnikov, I. V.; Han, B.; Wishart, D. S. Metaboanalyst
3.0–Making Metabolomics More Meaningful. Nucleic Acids Res. 2015,
43, W251−7.
(33) Phillips, M.; Herrera, J.; Krishnan, S.; Zain, M.; Greenberg, J.;
Cataneo, R. N. Variation in Volatile Organic Compounds in the Breath
of Normal Humans. J. Chromatogr. B Biomed. Sci. Appl. 1999, 729, 75−
88.
(34) Wong, H. B.; Lim, G. H. Measures of Diagnostic Accuracy:
Sensitivity, Specificity, PPV and NPV. Proc. Singapore Healthc. 2011,
20, 316−318.
(35) Gandhi, M.; Yokoe, D. S.; Havlir, D. V. Asymptomatic
Transmission, the Achilles’ Heel of Current Strategies to Control
COVID-19. N. Engl. J. Med. 2020, 382, 2158−2160.
(36) Tian, D.; Lin, Z.; Kriner, E. M.; Esneault, D. J.; Tran, J.; DeVoto,
J. C.; Okami, N.; Greenberg, R. M.; Yanofsky, S.; Ratnayaka, S.; Tran,
N.; Livaccari, M.; Lampp, M. L.; Wang, N.; Tim, S.; Norton, P.; Scott,
J.; Hu, T. Y.; Garry, R.; Hamm, L.; Delafontaine, P.; Yin, X. M. Ct
Values Do Not Predict Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) Transmissibility in College Students. J.
Mol. Diagn. 2021, 23, 1078−1084.
(37) Gao, Z.; Xu, Y.; Sun, C.; Wang, X.; Guo, Y.; Qiu, S.; Ma, K. A
Systematic Review of Asymptomatic Infections with COVID-19. J.
Microbiol., Immunol. Infect. 2021, 54, 12−16.

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.1c09371
ACS Nano XXXX, XXX, XXX−XXX

J

https://doi.org/10.1101/2020.06.21.20136523
https://doi.org/10.1101/2020.06.21.20136523
https://doi.org/10.1101/2020.06.21.20136523?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1101/2020.06.21.20136523?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.ebiom.2020.103154
https://doi.org/10.1016/j.ebiom.2020.103154
https://doi.org/10.1016/j.eclinm.2020.100609
https://doi.org/10.1016/j.eclinm.2020.100609
https://doi.org/10.1016/j.eclinm.2020.100609
https://doi.org/10.1038/s41591-020-0968-3
https://doi.org/10.1080/10408340600976499
https://doi.org/10.1080/10408340600976499
https://doi.org/10.1016/j.trac.2011.09.013
https://doi.org/10.1016/j.trac.2011.09.013
https://doi.org/10.1007/s11306-017-1241-8
https://doi.org/10.1007/s11306-017-1241-8
https://doi.org/10.1039/C7CS00786H
https://doi.org/10.1039/C7CS00786H
https://doi.org/10.1039/C7CS00786H
https://doi.org/10.1039/C7CS00786H
https://doi.org/10.1021/acs.nanolett.1c00416?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.nanolett.1c00416?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.nanolett.1c00416?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C8CC00564H
https://doi.org/10.1039/C8CC00564H
https://doi.org/10.1039/C8CC00564H
https://doi.org/10.1128/CMR.00020-13
https://doi.org/10.1128/CMR.00020-13
https://doi.org/10.3389/fchem.2019.00413
https://doi.org/10.3389/fchem.2019.00413
https://doi.org/10.1021/jp5025284?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp5025284?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp5025284?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C4NR01464B
https://doi.org/10.1039/C4NR01464B
https://doi.org/10.1039/C4NR01464B
https://doi.org/10.1039/C4NR01464B
https://doi.org/10.1021/acsami.7b19347?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.7b19347?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/anie.201407642
https://doi.org/10.1002/anie.201407642
https://doi.org/10.1038/srep02997
https://doi.org/10.1038/srep02997
https://doi.org/10.1021/ja101107z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja101107z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja101107z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.heliyon.2019.e01545
https://doi.org/10.1016/j.heliyon.2019.e01545
https://doi.org/10.1016/j.heliyon.2019.e01545
https://doi.org/10.1039/c0cc05302c
https://doi.org/10.1039/c0cc05302c
https://doi.org/10.1002/cem.785
https://doi.org/10.1002/cem.2609
https://doi.org/10.1002/cem.2609
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1007/s11306-007-0099-6
https://doi.org/10.1016/S0169-7439(00)00122-2
https://doi.org/10.1016/S1473-3099(21)00206-1
https://doi.org/10.1101/2020.04.05.20053355v3
https://doi.org/10.1101/2020.04.05.20053355v3?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1148/radiol.2020200343
https://doi.org/10.1148/radiol.2020200343
https://doi.org/10.1148/radiol.2020200343
https://doi.org/10.1159/000509334
https://doi.org/10.1159/000509334
https://doi.org/10.1016/j.jinf.2020.04.004
https://doi.org/10.1016/j.jinf.2020.04.004
https://doi.org/10.1016/j.jinf.2020.04.004
https://doi.org/10.1016/j.chemolab.2011.08.009
https://doi.org/10.1016/j.chemolab.2011.08.009
https://doi.org/10.1016/j.chemolab.2011.08.009
https://doi.org/10.1093/nar/gkv380
https://doi.org/10.1093/nar/gkv380
https://doi.org/10.1016/S0378-4347(99)00127-9
https://doi.org/10.1016/S0378-4347(99)00127-9
https://doi.org/10.1177/201010581102000411
https://doi.org/10.1177/201010581102000411
https://doi.org/10.1056/NEJMe2009758
https://doi.org/10.1056/NEJMe2009758
https://doi.org/10.1056/NEJMe2009758
https://doi.org/10.1016/j.jmoldx.2021.05.012
https://doi.org/10.1016/j.jmoldx.2021.05.012
https://doi.org/10.1016/j.jmoldx.2021.05.012
https://doi.org/10.1016/j.jmii.2020.05.001
https://doi.org/10.1016/j.jmii.2020.05.001
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.1c09371?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(38) Tao, A.; Sinsermsuksakul, P.; Yang, P. Polyhedral Silver
Nanocrystals with Distinct Scattering Signatures. Angew. Chem., Int.
Ed. 2006, 45, 4597−4601.
(39) Sim, H. Y. F.; Lee, H. K.; Han, X.; Koh, C. S. L.; Phan-Quang, G.
C.; Lay, C. L.; Kao, Y.-C.; Phang, I. Y.; Yeow, E. K. L.; Ling, X. Y.
Concentrating Immiscible Molecules at Solid@MOF Interfacial
Nanocavities to Drive an Inert Gas−Liquid Reaction at Ambient
Conditions. Angew. Chem., Int. Ed. 2018, 57, 17058−17062.
(40) Zhang, Z.-M.; Chen, S.; Liang, Y.-Z. Baseline Correction Using
Adaptive Iteratively Reweighted Penalized Least Squares. Analyst 2010,
135, 1138−1146.
(41) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion,
B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.
Scikit-Learn: Machine Learning in Python. J. Mac. Learn. Res. 2011, 12,
2825−2830.
(42) You, T.-t.; Yin, P.-g.; Jiang, L.; Lang, X.-f.; Guo, L.; Yang, S.-h. In
Situ Identification of the Adsorption of 4,4′-Thiobisbenzenethiol on
Silver Nanoparticles Surface: A Combined Investigation of Surface-
Enhanced Raman Scattering and Density Functional Theory Study.
Phys. Chem. Chem. Phys. 2012, 14, 6817−6825.

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.1c09371
ACS Nano XXXX, XXX, XXX−XXX

K

https://doi.org/10.1002/anie.200601277
https://doi.org/10.1002/anie.200601277
https://doi.org/10.1002/anie.201809813
https://doi.org/10.1002/anie.201809813
https://doi.org/10.1002/anie.201809813
https://doi.org/10.1039/b922045c
https://doi.org/10.1039/b922045c
https://doi.org/10.1039/c2cp24147a
https://doi.org/10.1039/c2cp24147a
https://doi.org/10.1039/c2cp24147a
https://doi.org/10.1039/c2cp24147a
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.1c09371?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

